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Introduction (1)

-

The detailed evolution of each exploding wire comprising a cylindrical array determines the
energy and power densities ultimately achievable in a z-pinch implosion of the array.
Presumably, once the relationship between exploding wire evolution and z-pinch dynamics is
understood sufficiently, one could design a z-pinch experiment that would produce the optimum
behavior for a given application. Before attempting to learn how exploding wire evolution affects
z-pinch behavior it is crucial to be able to accurately model the single exploding wire.

Toward that end we have been doing single-exploding-wire simulations in the z-r plane with the
MHD code MACH2 [1] and with Sandia's new code ALEGRA [2]. We have so far limited our
study to the radial evolution. Our standard configuration corresponds to recent, well diagnosed
exploding aluminum wire experiments from Cornell University [3].

[1] MACH Reference Manual by R. E. Peterkin, Jr. and M. H. Frese, July, 1998. The code must not be distributed without written
permission from the Air Force Research Laboratory: Phillips Research Site, Kirtland AFB, NM.

[2] ALEGRA: "User Input and Physics Descriptions - Oct99 Release”, Edward A. Boucheron, et. al., SAND99-3012, Sandia National
Laboratories, Albuquerque, NM

[3] "Expleding aluminum wire expansion rate with 1-4.5 kA per wire", D. B. Sinars, T. A. Shelkovenke, S. A. Pikuz, J. B. Greenly,
and D. A. Hammer, Physics of Plasmas 7(5), 1555 (May 2000).
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Introduction (2)

Simulations show that the path in phase space that an exploding wire takes in its evolution
from solid metal to high-temperature plasma is quite sensitive to the EOS and conductivity
models used.

We have been guided by comparing the simulations with the Cornell data while maintaining as a
constraint the consistency of our models with known EOS and conductivity data [4] from
independent experiments and with modern physical descriptions appropriate in the parameter
regimes of melt and of the metal-insulator transition [5].

A novel view of exploding wires allows us to see graphically the mutual relations between the
EOS and the electrical conductivity during the exploding wire's evolution. A key feature that
occurs under certain conditions, as observed in experiments, is the transition to a coronal state
{most current flowing through the rapidly-expanding low-density ionized vapor at large radius); a
rapid transition coincides with a voltage collapse. We identify important features of the EOS and
conductivity that allow corona formation in Aluminum in agreement with the data.

[4] A. W. DeSilva and J. D. Katsouros, "Electrical conductivity of dense copper and aluminum plasmas”, Phys. Rev. E 57, 5945 (1998).

[51 M. P. Desjarlais, "Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition”, Contrib. Plasma Phys.,

41, 267 (2001).
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MHD Simulations of Single Exploding Wire

-

Summary

+ The goal is to demonstrate accurate MHD modeling of a single
exploding Al wire as a precursor to being able to model a wire
array.

— This problem provides a prime benchmark opportunity for our ASCI rad-MHD
code ALEGRA

— We have the advantage of high-quality laboratory measurements from
exploding-wire experiments done at Cornell University

+ Exploding wire simulations identify regions where our transport
models must be most accurate. Improvements we make in these
regions (e.g., solid density near melt, and the metal-insulator
transition) are critical for achieving the above goal.
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MACH - Brief Description

-

developed by the Air Force Research Laboratog: Phillips Research Site,
written by Mike Frese, Bob Peterkin, and Tony Giancola.

ALE (Arbitrary Lagrangian-Eulerian), allows the grid to move independently
of the magnetofiuid.

includes diffusion, Lagrangian hydrodynamics, and advection
non-equilibrium radiation diffusion (3 temps possible: T,,T;, T,)
elastic-plastic models

block structure allows the modeling of complex geometries.
numerous user-supplied boundary conditions

New EOS/conductivity/opacity models easily implemented @ Sandia
Lzhoratories
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ALEGRA - Brief Description

-
Developed by Sandia National Laboratories, ALEGRA is an Arbitrary
Lagrangian-Eulerian Finite Element Code

- 1D, 2D, 0r 3D

— Emphasizes large distortion and shock propagation problems

Designed to run on distributed-memory parallel computers
Utilizes Adaptive Mesh Refinement Techniques

Physics options

— Hydrodynamics, Solid dynamics, Structural dynamics
~ MHD, Radiation MHD

— Opacity, Equation of State, Electron Transport models
— Elastic plastic, Fracture

Produces accurate results for numerous problems with known solutions
(e.g., impact generated shocks, cold diffusion) o
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Improving Electron Transport Models and
Material Equation Of State Leads to More
Accurate Exploding-Wire Simulations

Benchmark RMHD codes,EOS and Transport models
against Cornell exploding wire data (e.g., red curves below).
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Comparison with Measurements

(Simulations are driven by the experimental current wavefor

* Voltage waveform

— Energy deposited in the wire
— Electrical resistance of wire

* Expansion velocity of core

S/31/D1 + ser. 9
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Comparing Voltage Waveforms: Peak Voltage
within Factor of 2, and Accurate Collapse
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Comparing Energy Waveforms
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Comparing Wire Resistance Waveforms
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Follow the 50% Density Point to Define the Detectable
Diameter of the Wire Core as Measured in Experiment
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Sequential Snapshots of Radial Density Profiles
Clearly Show the Corona Formation

-
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Snapshots of the Radial Profiles of Enclosed
Current lllustrate the Stages of Corona Formation
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Stage 2: Neutral Gas Layer Evolves
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Stage 3: lonization Begins Due to Ohmic
Heating of Resistive Layer
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Stage 4: Conductivity of Outer Layer Increases
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Stage 5: Corona State Fully Established
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Electrical Conductivity Profiles (with LMD-DFT Model)
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Deposited Energy Comparison for Different Diameters
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Parametric Plots of Wires in Phase Space Help Us
See the Relationship Between EOS and Exploding
Wire Dynamics

-
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As the wire approaches the critical point (near r=0 point above: highest T and P where
distinct liquid and vapor phases coexist), wire expands along vapor side into p-T region

where conductivity is low and wire Ohmically heats and ionizes, forming corona.
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Simulations of an Exploding Wire Help Us
Learn What EOS Features are Crucial for
Corona Formation
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EOS and Conductivity are nonlinearly coupled, so Corona formation is quite sensitive to
the details of the EOS. Here the wire state from ALEGRA is displayed on the electrical
conductivity surface to compare wire states from [yellow] EOS Al 3719 (vapor dome with

Maxwell constructions) and [green] Al 3717 (Van der Waal loops).
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Advances We Are Making in EOS and Electron
Transport Have Enabled Accurate Exploding
Wire Simulations

-

= Simulations of a single exploding wire show strong dependence on
detailed structure of electrical conductivity and EOS.

+ ALEGRA and MACH simulations that use the recent L-M-D
electron transport model and EOS with vapor dome and Maxwell
constructions yield wire voltage in reasonable agreement with
experiment.

— timing is correct
— voltage collapse (corona formation) resolved
— no ad hoc surface conditions invoked; only pure Al considered

= Remaining discrepancy in voltage is partially related to inadequate
solid binding energy in EOS and inaccurate specific heat. We are
developing improved EOS tables. Refinements of L-M-D near solid
density are also in progress.
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